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S1. OPTIMAL SYMMETRICAL AND NON-AMPLIFYING TRANSFORMATION

For a given anchor polarization state |ψ⟩ = [cos β, sin βeiφ]
T and a target responsivity η0 =

|α|2, the necessary transformation will be

T = ξ [|V⟩ ⟨ψ| + γ|V⟩⟨ψ⊥|+
√
η0|H⟩⟨ψ⊥|] , (S1)

where |ψ⊥⟩ = [− sin βe−iφ, cos β]
T is the orthogonal state of anchor state. Expanding T, we get

T = ξ

 −√
η0 sin βe

iφ √
η0 cos β

cos β − γ sin βeiφ sin βe−iφ + γ cos β

 (S2)

To be a symmetrical matrix, the off-diagonal terms should be equal. This requires that

γ = − cot βe−iφ (
√
η0 − 1) , (S3)

and it results in

T = ξ

 −√
η0 sin βe

iφ √
η0 cos β

√
η0 cos β

1−√
η0 cos2 β

sinβ
e−iφ

 . (S4)

Another requirement to the transformation is that it does not amplify the input for any polarization.

This requires that the maximum singular value of the matrix is no more than one. To realize the

optimal transformation with minimum loss, we design the matrix whose maximum singular value

is exactly one. Following this, we determine that the optimal symmetrical matrix is the following:

T =
1

σmax

 − sin βeiφ cos β

cos β
1/

√
η0−cos2 β

sinβ
e−iφ

 (S5)
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where σmax is the maximum singular value of the matrix − sin βeiφ cos β

cos β
1/

√
η0−cos2 β

sinβ
e−iφ

 . (S6)

When the input state is |ψ⟩, the output state after the transformation T is

T|ψ⟩ =
[
0,

1

σmax
√
η0

]T
= ξ|V⟩ (S7)

Accordingly, we obtain ξ = 1/(σmax
√
η0).

When the input state is |ψin⟩ = |ψ⟩+ δ|ψ⊥⟩, the output state is

|ψout⟩ = T|ψin⟩ = ξ

 δ
√
η0

1− δ cot β e−iφ
(√

η0 − 1
)
 = ξ [|V⟩+ γδ|V⟩+ αδ|H⟩] (S8)

Note that, alternately we can also map the anchor state to the horizontal linear polarization based

on the same optical setup. In this case, we derive the following optimal symmetrical matrix by

using a similar procedure,

T =
1

σmax

 (1/
√
η0 − sin2β)eiφ/cos β sin β

sin β − cos βe−iφ

 (S9)

Accordingly, γ = tan βe−iφ
(√

η0 − 1
)
.

The above results indicate that the value of |γ| is fixed for a certain anchor state and target

responsivity if we apply a symmetrical transformation. It is better to map the anchor state to the

|H⟩ and |V⟩ when β is in the range 0 ∼ π/4 and π/4 ∼ π/2, respectively, in order to reduce |γ|.

Therefore, the theoretical minimum value of |γ| for a symmetrical transformation is

|γsym| = min {tan β, cot β} (
√
η0 − 1) (S10)

Figure S1 shows this theoretical limit of |γsym| as a function of β and the target responsivity. It

also means that |γsym| is always nonzero when the target responsivity η0 > 1 and |ψ⟩ ≠ |H⟩, |V⟩.

S2. EXPERIMENTAL CHARACTERIZATION METHODOLOGY

Due to the design goals of detecting ultrasmall polarization changes, it was necessary to im-

plement a number of measures to resolve practical implementation problems. The measurement

system, including the metasurface itself, is by definition highly sensitive to such small polarization
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Figure S1. Theoretical limit of |γsym| as a function of the β of the anchor state and the target responsivity

when the transformation matrix is symmetrical (i.e. non-chiral).

changes, including those that might arise from systemic or random error, and thus these had to be

accounted for.

We accounted for systemic error arising from non-ideal waveplates by accounting for

manufacturer-provided phase retardances. Due to the half- and quarter- waveplates being ideal

only at the manufacturer wavelengths of 1550 nm, they would have phase retardances varying

away from the correct π/2 and π/4 respectively. These errors were corrected for by utilizing the

wavelength-retardance relationship as provided by the manufacturer (example shown in Fig. S2)

for numerical calculations and fitting of the results. It was also found to be necessary to attain

accurate vertical alignment on the order of 0.001◦ in waveplate alignment by utilizing fixed point

calibration via mounted beamsplitter cubes and high-precision servo motors.

During the characterization and experimental process, it was also found to be necessary to ju-

diciously control the incident location and diameter of the beam on the metasurface. This was

achieved by utilizing a tightly-focused input beam, however, tight focusing of a polarized beam is

known to cause non-uniformity in the polarization39,40, thus resulting in a necessary experimental

trade-off in terms of beam polarization and metasurface uniformity. Leaving aside conventional

concerns such as requiring a normally incident beam, we observed empirically that the metasur-
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Figure S2. Manufacturer-provided wavelength-retardance relation of the half waveplate utilized in the ex-

perimental setup38.

face demonstrated undesirable angular and spatially dependent optical responses, arising from the

size and uniformity of the fabrication process. These arose from the non-uniform nanopillar di-

mensions across the metasurace, which was in turn caused by uncorrected proximity effect during

the electron beam lithography. Ultimately, it was determined through empirical means that the

beam diameter of approximatelt 40µm was an acceptable tradeoff, utilizing a lens of focal length

50mm. This provided a well-defined polarization while not impinging overly on the fabrication

variation across the metasurface.

S3. DETERMINATION OF THE ANCHOR STATE FROM THE CHARACTERIZED

TRANSFER MATRIX

After characterizing the transfer matrix to be T, we calculate the anchor state,

|ψ⟩ = T−1|V⟩
∥T−1|V⟩∥

(S11)

uncertainty factor

|γ| = |⟨V|T|ψ⊥⟩|
|⟨V|T|ψ⟩|

(S12)
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and responsivity

η = |α|2 = |⟨H|T|ψ⊥⟩|2

|⟨V|T|ψ⟩|2
(S13)

These are the equations we have used to obtain the results in Fig. 3 of the main paper.

S4. DETERMINATION OF THE EXPERIMENTAL RESPONSIVITY PARAMETERS FROM

THE MEASURED POWER RATIOS

In the measurement, we record the output powers PH,V at different derivations δ near the anchor

state. Assuming |ψin⟩ = |ψ⟩+ δ|ψ⊥⟩ and T = ξ [|V⟩ ⟨ψ| + γ|V⟩⟨ψ⊥|+ α|H⟩⟨ψ⊥|], we have

PH

PV

=
|⟨H|T|ψin⟩|2

|⟨V|T|ψin⟩|2
=

|αδ|2

|1 + γδ|2
. (S14)

Given that δ is a complex value, any given value of PH/PV can, in general, relate to a small

spread of values of |δ| with different phases. This results in a degree of imprecision for any

given measurement that is determined by practical concerns, as the proposed measurement scheme

cannot yield the complex phase of δ, only allowing for the measurement of |δ| instead. The

maximum and minimum values of |δ| will be

PH

PV

=
|α|2|δ|2max

(1 + |γ| |δ|max)
2 =

|α|2|δ|2min

(1− |γ| |δ|min)
2 . (S15)

Therefore,

|δ|max =

√
PH/PV

|α| − |γ|
√
PH/PV

≈

√
PH/PV

η

(
1 + |γ|

√
PH/PV

η

)
, (S16)

|δ|min =

√
PH/PV

|α|+ |γ|
√
PH/PV

≈

√
PH/PV

η

(
1− |γ|

√
PH/PV

η

)
. (S17)

This means that in the practical case with a nonzero |γ|, after measuring a specific power ratio the

polarization deviation can be determined in a range

|δ| ∈

(√
PH/PV

η
− |γ| PH/PV

η
,

√
PH/PV

η
+ |γ| PH/PV

η

)
. (S18)

Accordingly, the uncertainty of measuring |δ| is

∆ |δ| = |δ|max − |δ|min =
2 |γ|PH/PV

|α|2 − |γ|2PH/PV

= 2 |γ| |δ|max|δ|min ≈ 2 |γ| PH/PV

η
. (S19)
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For a specific value of PH/PV , we can calculate |γ| by

|γ| = |δ|max − |δ|min

2|δ|max|δ|min

. (S20)

Based on this equation, we obtain the experimental |γ| using the power measurement at different

derivations. The final |γ| is taken as the average of the derived |γ| obtained at several values of

PH/PV .

For a specific value of |δ|, the maximum and minimum values of PH/PV will be |αδ|2(1 −

|γδ|)−2 and |αδ|2(1 + |γδ|)−2, respectively. Accordingly, the maximum and minimum values of√
PV /PH are (1 + |γδ|)/|αδ| and (1− |γδ|)/|αδ|, respectively, if |γδ| < 1. Therefore, we obtain

max
(√

PV /PH

)
−min

(√
PV /PH

)
=

2|γδ|
|αδ|

=
2 |γ|
|α|

. (S21)

Then, we can calculate |α| by

|α| = 2 |γ|

max
(√

PV /PH

)
−min

(√
PV /PH

) . (S22)

The experimental responsivity is η = |α|2. This allows us to determine the experimental respon-

sivity from the measured power ratios at different deviations. The final η is taken as the average

of the derived η obtained at several values of |δ|.

S5. EFFECT OF SMALL DEVIATIONS IN METASURFACE PARAMETERS

To determine the robustness of the metasurface performance under small deviations in its phys-

ical dimensions from the numerically optimized values, which might arise from fabrication errors,

we performed numerical simulations. We considered the optimized metasurface design corre-

sponding to Figs. 3 and 4 of the main manuscript, and quantified the changes in the metasurface

Jones matrix against such variations, see the first two columns in Fig. S3. We observe that there

are no sharp changes in the metasurface Jones matrix elements as the physical dimensions are

varied. Accordingly, with these changes in dimensions, the chiral response is also preserved, and

the anchor state [Fig. S3, third column] also changes slightly. This happens because by design,

our metasurface response at the operating wavelength does not feature high-Q optical resonances.

We note that by the definition of responsivity, as in Eq. (S13), high responsivity values imply

small values of the denominator. Therefore, small changes in the Jones matrix can have significant

effect on the denominator and accordingly the responsivity magnitude, as seen in Fig. S3, fourth
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Figure S3. Simulated effects of deviations from the optimized parameters of the metasurface design consid-

ered in Figs. 3 and 4 of the main manuscript: (a) l1, (b) w1, (c) l2, (d) w2, (e) θ1, (f) θ2. Here the notations

correspond to Fig. 2(a). Shown are the absolute values (first column) and phases (second column) of the

Jones matrix elements, the anchor state parameters (third column), and the responsivity (fourth column).

These simulations were performed at a wavelength of 1573.8nm.
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column. This confirms that in order to achieve larger responsivity, one requires accordingly higher

metasurface fabrication accuracy.
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